Year 10 Worksheet 2: Geometry

Question 1: Answer the following.
(1) Find the value of x in the hexagon.
A. 70°
B. 65°
C. 100°
D. 85°
E. 55°
(2) Which test can be used to prove that $\triangle \mathrm{ABC} \equiv \triangle \mathrm{ADC}$

A. AAS
B. AAA
C. RHS
D. SSS
E. SAS
(3) Find the value of side x in the diagram below.

A. 3
B. 4
C. 5
D. 2
E. 1
(4) Find the value of side y in the diagram.
A. 3
B. 4
C. 5
D. 2
E. 1
(5) Find the length of the chord of the circle that has a chord 5 cm from the center and a radius of 7 cm .
A. $2 \sqrt{ } 24$
B. $2 \sqrt{ } 32$
C. $2 \sqrt{ } 27$
D. $7 \sqrt{ } 4$
E. $\sqrt{ } 20$
(6) Find the value of the pronumerals in the diagram.
A. $x=60^{\circ}, y=30^{\circ}$
B. $x=40^{\circ}, y=50^{\circ}$
C. $x=50^{\circ}, y=40^{\circ}$
D. $x=45^{\circ}, y=45^{\circ}$
E. $x=30^{\circ}, y=50^{\circ}$

(7) A cyclic quadrilateral has an angle of 82° and another angle of 97°. Find the last two angles.
A. $98^{\circ}, 83^{\circ}$
B. $88^{\circ}, 93^{\circ}$
C. $100^{\circ}, 81^{\circ}$
D. $90^{\circ}, 91^{\circ}$
E. $106^{\circ}, 75^{\circ}$
(8) Find the value of x if the circle has a diameter of 10 cm .

A. 14
B. 10.9
C. 17
D. 15.6
E. 12
(9) According to the alternate segment theorem, find the value of $\angle A B C$.

A. 57°
B. 85°
C. 40°
D. 38°
E. 25°
(10) Using intersecting chords theorem to find the value of x.

A. 6
B. 7.5
C. 8
D. 3.8
E. 5

Question 2: Answer the following.

4 a. Prove that $\triangle \mathrm{ABC} \equiv \triangle \mathrm{CDA}$.

Free Math Worksheets • www.successtutoring.com.au

Free Math Worksheets • www.successtutoring.com.au

Personalised English \& Math Tutoring

Redeem Free Assessment

Answer Key

Question 1: Answer the following.
(1) Find the value of x in the hexagon.
A. 70°
B. 65°
C. 100°
D. 85°
E. 55°

Answer: D. 85°
(2) Which test can be used to prove that
 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{ADC}$
A. AAS
B. AAA
C. RHS
D. SSS
E. SAS

Answer: E. SAS

(3) Find the value of side x in the diagram below.
A. 3
B. 4
C. 5
D. 2
E. 1

Answer: A. 3
(4) Find the value of side y in the diagram.
A. 3
B. 4
C. 5
D. 2
E. 1

5

Answer: B. 4
(5) Find the length of the chord of the circle that has a chord 5 cm from the center and a radius of 7 cm .
A. $2 \sqrt{ } 24$
B. $2 \sqrt{ } 32$
C. $2 \sqrt{ } 27$
D. $7 \sqrt{ } 4$
E. $\sqrt{ } 20$

Answer: A. 2 24
(6) Find the value of the pronumerals in the diagram.
A. $x=60^{\circ}, y=30^{\circ}$
B. $x=40^{\circ}, y=50^{\circ}$
C. $x=50^{\circ}, y=40^{\circ}$
D. $x=45^{\circ}, y=45^{\circ}$
E. $x=30^{\circ}, y=50^{\circ}$

Answer: C. $x=50^{\circ}, y=40^{\circ}$

(7) A cyclic quadrilateral has an angle of 82° and another angle of 97°. Find the last two angles.
A. $98^{\circ}, 83^{\circ}$
B. $88^{\circ}, 93^{\circ}$
C. $100^{\circ}, 81^{\circ}$
D. $90^{\circ}, 91^{\circ}$
E. $106^{\circ}, 75^{\circ}$

Answer: A. $98^{\circ}, 83^{\circ}$
(8) Find the value of x if the circle has a diameter of 10 cm .
A. 14
B. 10.9
C. 17
D. 15.6
E. 12

Answer: E. 12
(9) According to the alternate segment theorem, find the value of $\angle A B C$.

A. 57°
B. 85°
C. 40°
D. 38°
E. 25°

Answer: D. 38°
(10) Using intersecting chords theorem to find the value of x.

A. 6
B. 7.5
C. 8
D. 3.8
E. 5

Answer: C. 8

Question 2: Answer the following.

Free Math Worksheets • www.successtutoring.com.au

3 Prove the following triangles are congruent.
a.

ANS: A right angle, the hypotenuse.
b.

ANS: Two sides are equal and the angle between the two sides is equal (SAS: side, angle, side)
C.

ANS: Two angles are the same and a corresponding. side is the same (ASA: angle, side, angle)
d.

ANS: The three sides are equal (SSS: side, side, side)

4	a. Prove that $\triangle \mathrm{ABC} \equiv \triangle \mathrm{CDA}$. The three sides are equal (SSS: side, side, side) b. Prove that $A B \\| C D$. Since $\triangle A B C \equiv \triangle C D A$, $\angle A C D=\angle B \overline{A C}$ Thus, $A B \\| C D$ (alternate angle) c. Prove a quadrilateral $A B C D$ is a parallelogram. Similarly, $\angle D A C=\angle B C D$ Thus, AD \\|CB We have $A B \\| C D$ and $A D \\| C B$, thus $A B C D$ is a parallelogram.
5	Prove each pair of similarity triangles, giving reasons and find the value of the missing sides. $x=4.7$

Free Math Worksheets • www.successtutoring.com.au

7	a

© Consider $\triangle D O C$

$$
\begin{aligned}
& \angle O C O=90^{\circ} \\
& \therefore \quad \angle D O C=90-41 \\
&=49^{\circ}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \angle D O C+\angle B O C=180^{\circ} \\
& \therefore \angle B O C=180-49^{\circ} \\
&=131^{\circ}
\end{aligned}
$$

Θ Consider $\triangle O B C$

$$
\begin{aligned}
\angle O C B=\angle O B C & =(180-131) / 2 \\
& =24.5^{\circ}
\end{aligned}
$$

(1)

$$
\begin{aligned}
\angle O C E & =90^{\circ} \\
& =\angle O C B+a^{\circ} \\
& =24.5+a^{\circ} \\
\therefore a^{\circ} & =65.5^{\circ}
\end{aligned}
$$

b.

$$
\angle A B C=\angle B A C=73^{\circ}
$$

\oplus Consider $\triangle A B C$

$$
\begin{aligned}
& \angle A C B=d^{\circ} \\
& \Leftrightarrow d 80^{\circ}-\left(73^{\circ} \times 2\right) \\
& d
\end{aligned}
$$

\oplus

$$
\angle O A C=\angle O B C=90^{\circ} \text { (tangent) }
$$

$$
\begin{aligned}
\therefore \angle O A B=\angle O B A & =90-73^{\circ} \\
& =17^{\circ}
\end{aligned}
$$

Thus $c^{\circ}=180-(17 \times 2)=146^{\circ}=c$
(1) $b^{\circ}=c \%=73^{\circ}=b$

$$
\begin{aligned}
\text { C. }
\end{aligned}
$$

8
a.

$A P \times B P=C P^{2}$

$$
\begin{aligned}
4 x & =36 \\
x & =9
\end{aligned}
$$

c.

$$
\begin{aligned}
A P \times B P & =C P \times D P \\
2 \times 12 & =3 \times x \\
\therefore x & =8
\end{aligned}
$$

$$
\begin{aligned}
& 4 \times 6=3 y \\
& 24=3 y \\
& \therefore y=8
\end{aligned}
$$

