Year 9 Worksheet 4: Linear Relationships

Question 1: Answer the following.
(1) What are the y-and x-intercepts of the graph $4 x-2 y=16$?
A. y-int $=4$
B. y-int $=4$
C. y-int $=-4$
D. y-int $=-8$
E. y-int $=-8$
x-int $=8$
x-int $=-8$
x-int $=8$
x-int $=4$
x-int $=-4$
(2) The graph of $y=6 x-3$ is represented by:
A.
B.

C.

D.

(3) Given a line $y=-7 x+9$, which point below does not lie on this line?
A. $(0,9)$
B. $(1,2)$
C. $(-1,16)$
D. $(2,-5)$
E. $(3,-11)$
(4) Find the gradient of the line passing through $(-2,3)$ and $(0,-7)$.
A. -2
B. 3
C. -5
D. -7
E. 0
(5) The linear graph that does not have a gradient of 4 is:
A. $y=4 x-8$
B. $1 / 4 y=x+3$
C. $4 x+y=-1$
D. $y-4 x=4$
E. $2 y=8 x+2$
(6) In a direct proportion, if $y=4$ when $x=8$, what is the value of y when $x=12$?
A. 6
B. 8
C. 12
D. 16
E. 24
(7) Given a line with a slope of -4 and passing through the point $(2,6)$, what is the equation of the line in the form $y=m x+b$?
A. $y=-4 x-2$
B. $y=-2 x-4$
C. $y=2 x-4$
D. $y=4 x-2$
E. $y=6 x-4$
(8) Given 2 endpoints $A(3,5)$ and $B(9,11)$, what are the coordinates of the midpoint of the line segment $A B$?
A. $(3,5)$
B. $(6,8)$
C. $(12,16)$
D. $(4,6)$
E. $(8,11)$
(9) The gradient of a line perpendicular to the equation $y=3 x+2$ would be:
A. $1 / 3$
B. -3
C. 3
D. $-1 / 3$
E. 2
(10) The point of intersection of $y=x+3$ and $y=2 x-1$ is:
A. $(-1,2)$
B. $(1,4)$
C. $(2,5)$
D. $(-2,1)$
E. $(4,7)$

Question 2: Answer the following.

1	Sketch the following linear graphs labeling x - and y-intercepts a. $y=-x+3$ b. $3 x-9 y=6$ c. $-5 x+15 y=40$

2 Oliver departs from his workplace in his car and heads to his favorite hiking trail. The distance "d" kilometers from his workplace after "t" hours is described by the equation d = 120-45t.
a. Determine the distance between Oliver's workplace and his hiking trail.
b. How much time does it take for Oliver to arrive at his hiking trail?
c. Create a graphical representation of Oliver's journey from his workplace to the hiking trail.

3	By first plotting the given points, find the gradient of the line passing through the points. State the y-intercept and then sketch using the gradient-intercept method. a. $(2,6)$ and $(1,11)$
b. (1, -20) and $(-1,-36)$	

$4 \quad$ A garden pond is being filled with water using a garden hose. It takes 6 hours to fill 17,000 liters, and initially, there are 5,000 liters in the pond.
a. What is the flow rate of water into the pond?
b. Create a graph depicting the relationship between volume (V in liters) and time (t in hours) for a time interval of 0 to 6 hours.
c. By calculating the slope of the graph, determine the equation representing V as a function of t .
d. Use the equation to determine how long it will take to fill 27,000 liters of water into the pond.
\square

6	Sketch both lines on the same graph using the gradient-intercept method by determine the linear equation that is: a. parallel to the line $y=-3 x+7$ and passes through the point $(1$, $-3)$.
b. perpendicular to the line $y=-1 / 4 x-6$ and passes through the	
point (-2, 7).	

7	For the line segment joining the following pairs of points, find the: i. midpoint ii. length (to two decimal places where applicable) a. $(2,7)$ and $(5,9)$
b. $(8,3)$ and $(11,6)$	
c. $(-4,2)$ and $(4,-9)$	

\square

9	Find the point of intersection of the following straight lines. Sketch both lines on the same graph using the gradient-intercept method a. $y=3 x+2$ and $y=5-4 x$
b. $2 x-5 y=9$ and $y=-3 x-7$	

$10 \begin{aligned} & \text { Samantha needs to determine the selling price of these sculptures } \\ & \text { to ensure a weekly profit. Samantha has found that the cost of } \\ & \text { producing } 7 \text { sculptures in a week is } \$ 190 \text {, and the cost of producing } \\ & 12 \text { sculptures in a week is } \$ 250 \text {. } \\ & \text { a. Find a linear equation that relates the production cost, } \$ C \text {, to the } \\ & \text { number of sculptures produced, s. } \\ & \text { b. Use your equation to determine: } \\ & \text { i. The initial cost of materials each week. } \\ & \text { ii. The ongoing cost of production per sculpture. } \\ & \text { Samantha decides to sell the sculptures at a price of } \$ 25 \text { each, and }\end{aligned}$ she calculates her weekly profit using the formula $P=5 s-100$.
c. How many sculptures must she sell in order to make a profit?

Personalised English \& Math Tutoring

Redeem Free Assessment

Question 1: Answer the following.
(1) What are the y - and x-intercepts of the graph $4 x-2 y=16 ?$
A. y-int $=4$
B. y-int $=4$
C. y-int $=-4$
D. y-int $=-8$
E. y-int $=-8$
x-int $=8$
x-int $=-8$
x-int $=8$
x-int $=4$
x-int $=-4$

Answer: D. y-int $=-8, x-$ int $=4$
(2) The graph of $y=6 x-3$ is represented by:
A.
B.

C.

D.

Answer: B
(3) Given a line $y=-7 x+9$, which point below does not lie on this line?
A. $(0,9)$
B. $(1,2)$
C. $(-1,16)$
D. $(2,-5)$
E. $(3,-11)$

Answer: E. (3, -11)
(4) Find the gradient of the line passing through $(-2,3)$ and $(0,-7)$.
A. -2
B. 3
C. -5
D. -7
E. 0

Answer: C. -5
(5) The linear graph that does not have a gradient of 4 is:
A. $y=4 x-8$
B. $1 / 4 y=x+3$
C. $4 x+y=-1$
D. $y-4 x=4$
E. $2 y=8 x+2$

Answer: C. $4 x+y=-1$
(6) In a direct proportion, if $y=4$ when $x=8$, what is the value of y when x $=12$?
A. 6
B. 8
C. 12
D. 16
E. 24

Answer: A. 6
(7) Given a line with a slope of -4 and passing through the point $(2,6)$, what is the equation of the line in the form $y=m x+b$?
A. $y=-4 x-2$
B. $y=-2 x-4$
C. $y=2 x-4$
D. $y=4 x-2$
E. $y=6 x-4$

Answer: A. $y=-4 x-2$
(8) Given 2 endpoints $A(3,5)$ and $B(9,11)$, what are the coordinates of the midpoint of the line segment $A B$?
A. $(3,5)$
B. $(6,8)$
C. $(12,16)$
D. $(4,6)$
E. $(8,11)$

Answer: B. $(6,8)$
(9) The gradient of a line perpendicular to the equation $y=3 x+2$ would be:
A. $1 / 3$
B. -3
C. 3
D. $-1 / 3$
E. 2

Answer: D. $-1 / 3$
(10) The point of intersection of $y=x+3$ and $y=2 x-1$ is:
A. $(-1,2)$
B. $(1,4)$
C. $(2,5)$
D. $(-2,1)$
E. $(4,7)$

Answer: E. $(4,7)$

Question 2: Answer the following.

2 a) The distance between Oliver's workplace and his hiking trail is 120 kilometers.
b) Oliver takes 2.67 hours (approximately 2 hours and 40 minutes) to reach his hiking trail.
c)The graph of Oliver's journey will be

- a straight line
- a negative slope
- starts at 120 kilometers (the workplace)
- decreases at a rate of 45 kilometers per hour
- eventually reaching 0 kilometers (the hiking trail) at approximately 2.67 hours.

4 a. The flow rate of water into the pond can be calculated by dividing the change in volume (17,000 liters - 5,000 liters) by the time it takes to fill that change in volume (6 hours - 0 hours):

Flow Rate = Change in Volume / Time
Flow Rate $=$ (17,000 liters $-5,000$ liters) / (6 hours -0 hours)
Flow Rate $=2,000$ liters per hour
So, the flow rate of water into the pond is 2,000 liters per hour.
b. Here's a graph depicting the relationship between volume (V in liters) and time (t in hours) for $0 \leq \mathrm{t} \leq 6$ hours:

c. So, the equation representing V as a function of t is:
$V(t)=2,000 t+5,000$

$6 \quad$ a. $y=m x+b$ where " m " is the slope (which is -3) and "b" is the y-intercept.

Now, plug in the values:
$-3=(-3)(1)+b$
Solve for "b":
$-3=-3+b, b=0$
So, the equation of the line parallel to $y=-3 x+7$ and passing through the point $(1,-3)$ is: $y=-3 x$

b. We can use the fact that perpendicular lines have slopes that are negative reciprocals of each other. The given line has a slope of $-1 / 4$. The negative reciprocal of $-1 / 4$ is 4 .

So, the equation of the perpendicular line can be written as:
$y=m x+b$
where " m " is the slope (which is 4) and " b " is the y-intercept.
Now, plug in the values:
$7=(4)(-2)+b$
Solve for "b":
$7=-8+b, b=15$

8 a. For the line joining $(-3,7)$ and $(2, n)$ to have a gradient of 4 , we can use the formula for the gradient:
Gradient $(\mathrm{m})=($ Change in y$) /($ Change in x$)$
So, for the points $(-3,7)$ and $(2, n)$:
$4=(\mathrm{n}-7) /(2-(-3))$
$4=(n-7) / 5$
Now, solve for n : $\mathrm{n}=27$
So, the missing coordinate is $n=27$.

b. To find the missing coordinate in the line segment joining $(-2,5)$ and $(-8, n)$ with a length of 205 , we can use the distance formula:

Distance $=\sqrt{ }\left((x 2-x 1)^{2}+(y 2-y 1)^{2}\right)=\sqrt{205}$
$205=\sqrt{ }\left((-8+2)^{2}+(n-5)^{2}\right)$
Now, solve for n : $\mathrm{n}=18$

9 a. To find the point of intersection of the lines $y=3 x+2$ and $y=5-$ $4 x$, we can set these two equations equal to each other:
$3 x+2=5-4 x$
Now, solve for x :
$3 x+4 x=5-2$
$x=3 / 7$
Now that we have found x, we can substitute it into either equation to find y. Let's use the first equation:
$y=3(3 / 7)+2$
$y=23 / 7$
So, the point of intersection is (3/7, 23/7).

$$
x=\frac{3}{7} \text { and } y=\frac{23}{7}
$$

Plot

b. To find the point of intersection of the lines $2 x-5 y=9$ and $y=-3 x$ -7 , we can substitute the expression for y from the second equation into the first equation:
$2 x-5(-3 x-7)=9$

10 a. To find a linear equation relating production cost (C) to the number of sculptures produced (s), we can use the given data points (7 sculptures, cost \$190) and (12 sculptures, cost \$250). We can find the slope (cost per sculpture) and the y-intercept (initial cost of materials). Using these points:

Slope $(m)=($ Cost at 12 sculptures - Cost at 7 sculptures) / (12-7)
Slope $(\mathrm{m})=(\$ 250-\$ 190) / 5$
Slope $(\mathrm{m})=\$ 60 / 5$
Slope $(m)=\$ 12$ per sculpture
Now, we can use one of the points to find the y-intercept (b). Let's use the point (7 sculptures, cost \$190):
$\$ 190=\$ 12$ per sculpture * 7 sculptures +b
$\$ 190=\$ 84+b$
Now, solve for b:
b = \$190-\$84
$b=\$ 106$
So, the linear equation relating production cost (C) to the number of sculptures produced (s) is $\mathrm{C}=12 \mathrm{~s}+106$.
b. i. The initial cost of materials each week is $\$ 106$.
ii. The ongoing cost of production per sculpture is $\$ 12$.
c. To find out how many sculptures Samantha must sell to make a profit, we can use the profit formula $P=5 s-100$ and set it equal to zero:
$5 s-100=0$
Now, solve for s:
$5 s=100$
$s=20$
Samantha must sell 20 sculptures to make a profit.

