Year 9 Worksheet 1:
 Computation and Financial mathematics

Question 1: Answer the following.
(1) 7.06836 written to three significant figures is:
A. 7.06
B. 7.07
C. 7.068
D. 7.069
E. 7.68
(2) 3.75 written as a fraction in simplest form is:
A. $2 \frac{1}{2}$
B. $\frac{37}{5}$
C. $\frac{15}{4}$
D. $3 \frac{7}{5}$
E. $\frac{375}{100}$
(3) Simplifying the ratio $12 \mathrm{~m}: 30 \mathrm{~cm}$ gives:
A. $40: 1$
B. $2: 5$
C. $12: 30$
D. $2: 3$
E. 5:2
(4) 25% of $\$ 2500$ is equal to:
A. 50
B. 875
C. $\$ 875$
D. $\$ 250$
E. 250
(5) $1 \frac{2}{3}-\frac{5}{9}$ is equal to:
A. $\frac{10}{3}$
B. $\frac{3}{9}$
C. $\frac{7}{3}$
D. $\frac{7}{9}$
E. $\frac{10}{9}$
(6) $\frac{2}{3} \times \frac{9}{7}$ is equal to:
A. $\frac{7}{6}$
B. $\frac{2}{7}$
C. $\frac{6}{7}$
D. $\frac{6}{21}$
E. $\frac{11}{3}$
(7) $\frac{5}{6} \div \frac{3}{5}$ is equal to:
A. $\frac{25}{18}$
B. $\frac{1}{2}$
C. $\frac{15}{30}$
D. $\frac{6}{10}$
E. 1
(8) Sarah receives a wage of $\$ 19.50$ per hour. Over a week, she works 15 hours at this regular rate and then puts in 5 hours on a special holiday when she earns time and a half. What is her total weekly earnings?
A. $\$ 213.75$
B. $\$ 292.50$
C. $\$ 390.00$
D. $\$ 438.75$
E. $\$ 1950.00$
(9) Laura receives a weekly base salary of $\$ 420$ and earns a 15% commission on all the sales she generates. If she generates $\$ 3,600$ in sales during a specific week, what will her total earnings for that week be?
A. $\$ 910$
B. $\$ 520$
C. $\$ 960$
D. $\$ 540$
E. \$980
(10) An initial investment of $\$ 1,500$ grows by 21% annually through compound interest for two years. What is the total balance at the end of the two-year period to the nearest dollar?
A. $\$ 1,983$
B. $\$ 2,196$
C. $\$ 1,725$
D. $\$ 2,650$
E. $\$ 1,635$

Question 2: Answer the following.

1	Evaluate the following and express the answer in mixed number form. a. $1 \frac{2}{5}+2 \frac{1}{2}$ b. $4 \frac{4}{5}-3 \frac{3}{4}$ c. $1 \frac{1}{10} \times 2 \frac{3}{5}$ d. $\frac{5}{7} \div 1 \frac{12}{25}$

2 Sarah and Michael are planning a pizza party. They want to split the pizzas in a ratio of 3:4. They discover two pizzerias with different prices and sizes.
a. Determine which Pizzeria offers the better deal:

Pizzeria A: 5 large pizzas for $\$ 38.50$
Pizzeria B: 3 large pizzas for $\$ 22.99$
b. Calculate the cost of ordering 20 large pizzas and find how much they could save from the better deal.
c. Determine the contribution of Sarah and Michael if they choose Pizzeria B.

\square

Abstract

6 a. Emma has a part-time job where she works 16 hours during the weekdays at the regular hourly rate of $\$ 20$. She also works an additional 6 hours on the weekends at times and a half. How much does Emma earn in a week? b. Olivia's wage per hour is adjusted. In a week, she works 9 hours at the standard rate, 4 hours at time and a half, and 5 hours at double time. If her total weekly earnings are $\$ 570$, what is her new hourly wage? c. Lisa is compensated for assembling furniture. She is paid $\$ 20$ for each piece she assembles. Last week, she worked 7 hours per day for 5 days and assembled 15 pieces of furniture. Determine her hourly wage.

7 Emily intends to purchase a laptop that is advertised for \$1,500, but she currently lacks the full amount. She opts for a "buy now, pay later" agreement where she makes an initial payment of $\$ 400$ and then pays $\$ 80$ each month for 3 years.
a. Calculate the total cost Emily will pay for the laptop.
b. Why is the total cost of buying the laptop using this method higher than the initially advertised price?
c. Determine the amount Emily could have saved by paying the full advertised price upfront rather than choosing the "buy now, pay later" option.
d. Calculate the annual simple interest rate, expressed as a percentage of the original laptop price, in this "buy now, pay later" agreement.
\square

Personalised English \& Math Tutoring

Redeem Free Assessment

Answer Key

Question 1: Answer the following.
(1) 7.06836 written to three significant figures is:
A. 7.06
B. 7.07
C. 7.068
D. 7.069
E. 7.68

Answer: B 7.07
(2) 3.75 written as a fraction in simplest form is:
A. $2 \frac{1}{2}$
B. $\frac{37}{5}$
C. $\frac{15}{4}$
D. $3 \frac{7}{5}$
E. $\frac{375}{100}$

Answer: C. $\frac{15}{4}$
(3) Simplifying the ratio $12 \mathrm{~m}: 30 \mathrm{~cm}$ gives:
A. $40: 1$
B. $2: 5$
C. $12: 30$
D. $2: 3$
E. $5: 2$

Answer: A. 40 : 1
(4) 25% of $\$ 2500$ is equal to:
A. 50
B. 875
C. $\$ 875$
D. $\$ 250$
E. 250

Answer: C. \$875
(5) $1 \frac{2}{3}-\frac{5}{9}$ is equal to:
A. $\frac{10}{3}$
B. $\frac{3}{9}$
C. $\frac{7}{3}$
D. $\frac{7}{9}$
E. $\frac{10}{9}$

Answer: E. $\frac{10}{9}$
(6) $\frac{2}{3} \times \frac{9}{7}$ is equal to:
A. $\frac{7}{6}$
B. $\frac{2}{7}$
C. $\frac{6}{7}$
D. $\frac{6}{21}$
E. $\frac{11}{3}$

Answer: C. $\frac{6}{7}$
(7) $\frac{5}{6} \div \frac{3}{5}$ is equal to:
A. $\frac{25}{18}$
B. $\frac{1}{2}$
C. $\frac{15}{30}$
D. $\frac{6}{10}$
E. 1

Answer: A. $\frac{25}{18}$
(8) Sarah receives a wage of $\$ 19.50$ per hour. Over a week, she works 15 hours at this regular rate and then puts in 5 hours on a special holiday when she earns time and a half. What is her total weekly earnings?
A. $\$ 213.75$
B. $\$ 292.50$
C. $\$ 390.00$
D. $\$ 438.75$
E. $\$ 1950.00$

Answer: D. \$438.75
(9) Laura receives a weekly base salary of $\$ 420$ and earns a 15% commission on all the sales she generates. If she generates $\$ 3,600$ in sales during a specific week, what will her total earnings for that week be?
A. $\$ 910$
B. $\$ 520$
C. $\$ 960$
D. $\$ 540$
E. $\$ 980$

Answer: C. \$960
(10) An initial investment of $\$ 1,500$ grows by 21% annually through compound interest for two years. What is the total balance at the end of the two-year period to the nearest dollar?
A. $\$ 1,983$
B. $\$ 2,196$
C. $\$ 1,725$
D. $\$ 2,650$
E. $\$ 1,635$

Answer: B. \$2,196

Question 2: Answer the following.

1	Evaluate the following and express the answer in mixed number form. a. $1 \frac{2}{5}+2 \frac{1}{2}$ $=3 \frac{9}{10}$ b. $4 \frac{4}{5}-3 \frac{3}{4}$ $=1 \frac{1}{20}$ c. $1 \frac{1}{10} \times 2 \frac{3}{5}$ $=2 \frac{43}{50}$ d. $\frac{5}{7} \div 1 \frac{12}{25}$ $=\frac{65}{133}$
2	Answers: a. To find the better value, calculate the price per large pizza for each option: Pizzeria A: $\$ 38.50 / 5$ pizzas $=\$ 7.70$ per large pizza Pizzeria B: $\$ 22.99 / 3$ pizzas $\approx \$ 7.66$ per large pizza Pizzeria B offers the better value. b. For 20 large pizzas: Pizzeria A: 20 pizzas * $\$ 7.70$ per pizza $=\$ 154.00$ Pizzeria $B: 20$ pizzas * $\$ 7.66$ per pizza $\approx \$ 153.20$ Save: 80 c c. If they choose Pizzeria B, Sarah and Michael, they want to split the pizzas in a ratio of $3: 4$. Sarah: $\$ 65.66$ Michael: $\$ 87.54$

3	Answer: Calculate the total number of students in the cross-country team: 40% of 1,125 students $=(40 / 100)^{*} 1,125=450$ students Now, find 20% of these 450 students to determine how many weigh between 60 and 70 kg: 20% of 450 students $=(20 / 100) * 450=90$ students
4	Answers: a. To find the percentage increase, subtract the initial price from the final price, divide by the initial price, and multiply by $100:$ Percentage Increase $=[(500-450) / 450] * 100=(50 / 450) * 100 \approx$ 11.1% b. To calculate the percentage decrease, subtract the final attendance from the initial attendance, divide by the initial attendance, and multiply by $100:$ Percentage Decrease $=[(640-720) / 720] * 100=(-80 / 720) * 100$ $\approx-11.1 \%$ c. To find the initial volume of water, divide the final volume by 1 plus the percentage increase in decimal form: Initial Volume $=$ Final Volume / $(1+$ Percentage Increase in Decimal Form $)$ Initial Volume $=1,725 /(1+0.15) \approx 1,500$ liters
5	Answers: a. The selling price of the dress can be found by adding the markup percentage to the cost price: Selling Price $=$ Cost Price + Markup Selling Price $=\$ 200+(25 \%$ of $\$ 200)$ Selling Price $=\$ 200+(\$ 50)$

Selling Price $=\$ 250$
The selling price of the dress is $\$ 250$.
b. To calculate the discounted price of the sofa, subtract the
discount percentage from 100% to find the percentage paid, and
then multiply it by the original price:
Discounted Price $=(100 \%-20 \%)$ of $\$ 1,500$
Discounted Price $=(80 \%$ of $\$ 1,500)$
Discounted Price $=0.8 * \$ 1,500$
Discounted Price $=\$ 1,200$
The discounted price of the sofa is $\$ 1,200$.
c. To find the original price of the laptop, you can set up the
equation:
Original Price -10% of Original Price $=$ Sale Price $0.9 *$ Original Price $=\$ 765$ Now, solve for the original price: Original Price $=\$ 765 / 0.9$ Original Price $=\$ 850$ The original price of the laptop was $\$ 850$.
6
Answers:
a. To calculate Emma's earnings, we'll first find the earnings for the
regular hours and then add the earnings for the weekend hours.
Earnings for regular hours = 16 hours * $\$ 20 /$ hour $=\$ 320$
Earnings for weekend hours = 6 hours * $\$ 20 /$ hour * 1.5$)=\$ 180$
Total earnings $=\$ 320+\$ 180=\$ 500$
Emma earns $\$ 500$ for the week.

	b. Let x be Olivia's new hourly wage. We can set up an equation based on her weekly earnings: Earnings for regular hours $=9$ hours * x Earnings for time and a half $=4$ hours * ($1.5^{*} \mathrm{x}$) Earnings for double time $=5$ hours * (2 * x) Total earnings $=9 x+6 x+10 x=25 x$ Given that her total earnings are $\$ 570$, we can solve for x : $\begin{aligned} & 25 x=\$ 570 \\ & x=\$ 22.80 \end{aligned}$ Olivia's new hourly wage is $\$ 22.80$. c. To calculate Lisa's hourly wage, divide her total earnings by the total number of hours worked: Total Earnings $=\$ 20$ per piece * 15 pieces $=\$ 300$ Total Hours Worked $=7$ hours/day * 5 days $=35$ hours Hourly Wage $=$ Total Earnings $/$ Total Hours Worked Hourly Wage $=\$ 300 / 35$ hours $\approx \$ 8.57$ per hour Lisa's hourly wage is approximately $\$ 8.57$.
7	Answers: a. To calculate the total cost, add the initial payment to the total monthly payments: Total Cost = Initial Payment + (Monthly Payment * Number of Months) Total Cost $=\$ 400+(\$ 80$ * 36) Total Cost $=\$ 400+\$ 2,880$ Total Cost $=\$ 3,280$ Emily will pay a total of $\$ 3,280$ for the laptop.

	b. The total cost is higher because the "buy now, pay later" agreement includes interest or fees for the convenience of spreading out the payments over time. c. To find the savings, subtract the total cost from the advertised price: $\begin{aligned} & \text { Savings }=\text { Advertised Price }- \text { Total Cost } \\ & \text { Savings }=\$ 1,500-\$ 3,280 \\ & \text { Savings }=-\$ 1,780 \end{aligned}$ Emily could have saved $\$ 1,780$ by paying the advertised price upfront. d. To calculate the annual interest rate, you can use the formula: Annual Interest Rate $=[($ Total Cost - Advertised Price) / Advertised Price] / Number of Years Annual Interest Rate $=[(\$ 3,280-\$ 1,500) /(\$ 1,500)] / 3 * 100 \%$ Annual Interest Rate $=(\$ 1,780 / \$ 4,500) * 100 \%$ Annual Interest Rate $\approx 39.56 \%$
8	Answers: a. To find the final amount of the investment, use the compound interest formula: Final Amount $=$ Principal * $(1+\text { Interest Rate })^{\wedge}$ Number of Years Final Amount $=\$ 9,500$ * $(1+0.04)^{5}$ Final Amount $\approx \$ 11,558.63$ The total value of the investment after 5 years will be approximately \$11,558.63. b. To determine the initial loan amount, you can use the reverse of the compound interest formula:

	Initial Loan Amount $=$ Final Amount $/(1+\text { Interest Rate })^{\wedge}$ Number of Years Initial Loan Amount $=\$ 75,800 /(1+0.065)^{8}=\$ 45,800$ c. To find the gadget's value at the end of the seventh year with a 10% annual depreciation rate, you can use the following formula: Final Value $=$ Initial Value * $(1-\text { Depreciation Rate })^{\wedge}$ Number of Years Final Value $=\$ 600 *(1-0.10)^{7}$ Final Value $=\$ 600 *(0.9)^{7}=286.98$

